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ABSTRACT

It is well-known that composite materials develop a complex damage state

when they are subjected to monotonic or fatigue loading. The damage has, in

general, two effects on the propagation of an ultrasonic wave: it decreases

the stiffness and increases the attenuation. The central objective of this

work has been to correlate damage states with changes in the two ultrasonic

parameters (wavespeed and attenuation).

We have developed a new technique for meaquring the wravespeed ?nd

attenuation in the thickness direction, in extremely thin laminates. We have

also developed a technique for the excitation and detection of Lamb waves in

the lengthwise direction. Thus both the in-plane and out-of-plane

measurements can be made.

Damage in the form of transverse cracking in cross-ply, laminates has

been studied by the use of these two techniques. For through-the-thickress

measurements the stiffness was found to be insensitive to transverse

cracking. The attenuation, however, was found to be quite sensitive and,

therefore, has been shown to be a reliable damage metric. For the

complementary case of Lamb wave propagation in the lengthwise direction, both

the stiffness and the attenuation were observed to be sensitive damage

parameters.
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I. SUMMARY OF RESEARCH ACCOMPLISHED

The following is a brief summary of the research performed during the

grant period:

1.1 A theoretical investigation of plane wave propagation In a general

unbounded anisotropic solid.

&.2 A combined theoretical/experimental study of plane wave propagation, in

the thickness direction, in a composite plate immersed in water.

1.3 A combined theoretical/experimental study of Lamb wave propagation, in

the lengthwise direction, in a composite plate Immersed in water.

1.4 A study of damage in the form of transverse cracking by the use of these

two techniques

2



2. DETAILS OF RESEARCH ACCOMPLISHED

2.1 Wave Propagation in an Anisotropic Solid

As a prelude to the design of experimental techniques and the

interpretation of the gathered data it was considered desirable to study, in

fairly general terms, the nature of wave propagation in anisotropic media. In

particular, several wave propagation concepts which are unique to anisotropic

media were studied in detail: velocity surface, wave surface, slowness

surface, group velocity, and deviations of the energy flux vector and particle

displacement vector from the wave vector. These results were summarized in an

interim progress report to the AFOSR I1l. In the following we reproduce a

typical result of Ill. A generic unidirectional fiber-reinforced

graphite/epoxy composite is considered; the fibers are along the x, axis

(transverse isotropy with x, as the axis of isotropy). Fig 1 shows the

velocity surface i.e. the distance between the origin and any point on the

curve is the velocity of a plane wave in that particular direction. The

velocity is an eigenvalue of the well-known Christoffel equations

(Cijktnjnl - Pv26ik) Pk = 0 (1)

where C ijk is the stiffness matrix, o is the density, Pk is the unit particle

displacement vector (eigenvector) and v is the phase velocity of time-harmonic

waves travelling in the direction ni. Eq (1) has three eigenvalues: one

quasi-longitudinal (L) and two quasi-shear (SH ard Sv) . Note that, as

expected, the highest wavespeed is that of the longitudinal wave in the fiber

direction. The unit vector p )s the parric aisplia ement vector. This

brings out clearly a unique feature of wave propagation in anisotropic

materials: particle displacement in general is not parallel (perpendicular) to

3
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the wavevector for longitudinal (transverse) waves. In turn, this gives rise

to another interesting phenomenon, namely, the direction in which the energy

flows is not in the same as the direction of wave propagation. This is shown

in Fig. 2. Let slowness s - 1/v. The slowness surfaces for the longitudinal

wave and two shear waves are shown in Fig. 2. It is well-known that the

energy flux vector (F) is perpendicular to the slowness surface; we have

plotted F as a bi-directional vector every ten degrees on the slowness

surfaces. With reference to the L-surface we note that when the wave is

propagating anywhere in the range 00 - 80° from the fiber direction the energy

flows (practically) in the fiber direction. This was perhaps the most

significant observation of our theoretical investigation.

We have developed a computer code which can compute various three-

dimensional surfaces for the most general (21 elastic constants) composite

material.

The concept of stress-wave-factor originated by Alex Vary [21 has

recently been applied to composite materials (31. To the best of our

knowledge there has not appeared a satisfactory explanation as to why the SWF

technique works. Our work has offered some (albeit far from complete)

explanation of this phenomenon Ill.

2.2 Through-The-Thickness Measurements. Theory

Our objective here is to measure the wavespeed c and the attenuation k2

of a laminate in its thickness direction. A conventional method is the

toneburst method 141. However t)e toneburst method is suitable only for

relatively thick spclens (about five-wavelength thick). The central

objective of the development of composite materials is to fabricate light-

weight aerospace structures i.e. to use thin laminates (of the order of a few

5
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millimeters); here the toneburst method completely breaks down. This

observation motivated us to define the first goal of the present research: to

develop a new experimental technique suitable for thin plates (sub-millimeter

in thickness).

We have used the following fact from the theory of Fourier Transforms: If

two events are very close in the time domain, then a pair of corresponding

events are proportionately far apart in the frequency domain.

In order to make our technique useful in other areas of mechanics and

physics of solids, throughout this investigation we have adapted a "black-box"

approach i.e. one can measure the phase velocity, the group velocity and the

attenuation of any linear viscoelastic solid. The technique works equally

well for thick or thin plates, for dispersive or non-dispersive materials.

The details of this technique have been given in 151. Consider a linear

viscoelastic plate (e.g. a composite laminate) immersed in an elastic fluid

(e.g. water). A plane-fronted longitudinal wave begins to travel at time t=O

in the positive x direction; see Fig. 3 for a Lagrangian diagram. Let the

displacement in the incident field, Ray 1, be given by

uinc . fo(,t-koX)

where w is the circular frequency and ko is the waverumber in water; the speed

of sound in water co = W/ko. The interaction of this pulse with the plate

results in a series of reflected pulses, Rays 2, 6, 10, ...- , and a series of

transmitted pulses, Rays 4, 8, 12......, see Ref (5) for details.

We recall the Fourier transforms of a function f(t) as

F(w) f (2w) e-itdt,

7
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Fig. 3 Lagrangian diaqram for reflected and transmitted field
from a plate imm~ersed in water.
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with f(t) = (2N) -i J" F*(w) etiwtd-, --<t<W

2.2.1 Thick Specimens

The use of the words "thick" and "thin" is, of course, quite arbitrary.

For the purpose of this discussion we define a specimen to be thick if, in

Fig. 3, we can clearly separate various pulses from each other. The incident

wave is the signal produced by a typical ultrasonic transducer when energized

by a short-duration electrical spike.

Let us first consider the reflected field. Let f(t) be the signal

corresponding to Ray 2 and g(t) be the signal corresponding to Rays 2 and 6

combined; let F (w), G (w) be their Fourier transforms, then 15]

G(-) I - T12 T21e2kh
F ()

where T12 is the transmission coefficient from water into specimen, T2 1 is the

transmission coefficient from specimen into water, h is the specimen thickness

and k is the complex-valued wavenumber in the specimen, k = k, -r I k2 , where

the phase velocity c = w/kI and k2 is the attenuat.on (nepers/mm) i.e. a wave

decays exponentially as e- 2X. The stiffness, in turn, Is given by an

expression of the type E = pc2. Thus, the measurement of k is the central

objective of this work. If one writes -(G /F )/T1 2T21  in its polar form as

Mei  then it can be readily shown that

ki 7#1-€2h

k = (In i)/2h

9



Furthermore, a plot of IG*(w)I vs w is characterized by a series of resonance

peaks whose spacing is given by

AW = (cv)/h

As was mentioned earlier this is a fundamental observation of this

work. As the plate becomes very thin (h-.0) the front and back surface

reflections become very close in the time domain; however, aw.- i.e. any two

neighboring resonance peaks in the frequen.y domain (the corresponding pair of

events) become very far apart.

Let us now consider the transmitted field for a thick specimen. Let f(t)

be the incident field with the specimen removed. Let g(t) be the signal due

to Ray 4 alone. Then

G _ T2T21e-i(kh + k0h)

F

2.2.2 Thin Specimens

Consider a case when h is so small that Rays 2, 6, 10 ... cannot be

separated in the time domain. As previously mentioned, none of the existing

techniques can be used to measure the phase velocity or attenuation for this

case.

Let g(t) be the total reflected field, Rays 2+6+10+ ..... Let f(t) be

Ray 2 obtained separately (see 151 for details). Then the complex wavenumber

k can be obtained from the set of equations

R2 e-1
2 kh =

21

10



z =

PG R-12R21 ( _G 1)

:2 21 F

We now consider the transmitted field. Let f(t) be the incident field

throug* water only i.e. with the specimen removed. Let g(t) be the total

transmitted field, Rays 4+8+12+.. .. Unlike the cases considered so far, here

we get a quadratic in Z = exp(-ikh)

Z2 + ZY - Do =0, where

T 12 T21 F
R21Zo G

zo = exp(-ihk0 )

Do a 1/R 2

The fact that one gets two roots for the wavenumber is not at all

disturbing. For the correct root the phase of z decreases with frequency (for

the incorrect root the converse is true)

This sums up the development of the theory in support of the experimental

work which is described next.

11



2.3 Through-the-Thickness Measurement. Experimental

A schematic of the apparatus is shown in Fig. 4. The heart of the system

is a pair of accurately matched, broad-band, water-immersion piezoelectric

transducers. The frequency was varied in the range 0.5 - 10 MHz; the

oscilloscope digitizes at the rate of 100 x 106 points per second. We

estimated the precision of our experiments as follows: For homogeneous

materials (e.g. aluminum, epoxy, steel, plexiglas, etc.) the precision in

velocity is about 0.1%. For graphite/epoxy composite the precision in

velocity is 0.2% and in attenuation it is about 5%.

Calibration Procedures Whenever a new technique for measuring wavespeed (or

attenuation) is developed, properly it should be used to measure wavespeed of

a material whose wavespeed is known to an accuracy about ten times better than

the (claimed) accuracy of the new experimental technique. Unfortunately,

however, we found that the National Bureau of Standards has not yet developed

a reference standard for wavespeed (or stiffness). This section is devoted to

our efforts in lieu of a standard calibration.

ASTM Round Robin Test

Our laboratory participated in a six-laboratory round-robin program

conducted by the American Society for Testing and Materials. Two nickel-based

alloys were tested. We measured both the longitudinal as well as the shear

wavespeeds. We make two observations.

1. The precision in our measurements was +0.15%

2. Measurements by all six laboratories were within ±2.5% of each other

The results of this investigation have been accepted for publication by the

Journal of Testing arid Evaluation 161.

12
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Since the goal of our effort is to develop a technique for testing "thin"

plates, we subjected our procedures to the following critical test. We

started with a "thick" aluminum plate (2.807 mm) and gradually machined it

down to an extremely "thin" plate of 0.258 mm thickness (IOx10 -3 inches i.e. a

very thin foil). At each stage we measured the wavespeed. The results are

presented in Table 1. (Here, a is the standard deviation of ten measurements

far each thickness). We conclude that as we transition from "thick" to "thin"

plates, the precision remains within ±0.15% which is considered excellent.

Similar results were obtained with an epoxy specimen [5].

Finally, we subjected our technique to a very difficult test of measuring

wavespeed and attenuation in a highly dispersive as well as attenuative medium

namely, a random particulate composite. This material has been studied in

detail by Kinra et al 17,81, therefore, we had a database with which we could

compare our present measurements. The results are shown in Fig. 5. Here <ci>

is the wavespeed in the composite, cl is the wavespeed in the neat matrix

material, o is a suitably normalized frequency and E is the volume fraction of

inclusions. The important point is that the entire dispersion curve (<ci_

vs a) as well as the attenuation curve was obtained in a single experiment.

Previously, ([7,81 for example) each data point required a separate toneburst

experiment. Therefore, the new technique is not only more time-efficient by

several orders of magnitude, it is also more accurate by about one order of

magnitude.

14



TABLE 1. Test Results on Aluminum Sample

Material: Aluminum
Wave Type: Longitudinal
Mode: Transmission
Frequency: 10 MHz
Density: 2.8177 t 0.0004 g/ml

h h/x C a/c Technique
mm mm/,sec %

2.807 4.4 6.3572 Toneburst

2.807 4.4 6.3239 0.013 Second/First

2.807 4.4 6.3275 0.010 All/First

1.686 2.7 6.3461 0.040 All/First

1.001 1.6 6.3538 0.030 All/First

0.613 0.96 6.3594 0.130 All/First

0.258 0.4 6.3231 0.140 All/First

15
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2.4 Through-the-Thickness Measurements. Results

We now present some results concerning the assessment of damage using the

techniques developed during this investigation. The attention thus far has

been confined to cross-ply laminates, both the "thick" and the "thin"

laminates have been tested. The principal conclusions are:

1. As expected, there is no measurable change in the through-the-

thickness stiffness due to transverse cracking

2. The attenuation, on the other hand, is a very sensitive and

reliable measure of transverse cracks.

Following lay-ups were tested: [02,908,0 21 s, 106,90 4,021s , and

[0,904i s. The laminates were subjected to monotonic tensile loading and

transverse cracks developed in the 900 plies. The "damage" was quantified in

the form of edge replication; see Fig. 6. After each of the six load steps,

the coupon was removed from the tensile testing machine and subjected to an

ultrasonic examination. In Fig. 6 we have plotted the change in attenuation

from its undamaged state, Ak2 x, against the load level; the damage state at

each load level is included schematically. We have shown only that one inch

segment of the length of the coupon which is insonified by the ultrasonic

beam. It is well-known that the scattering of a wave by a defect is a

sensitive function of the wavenunber, k1a, when k1a is of the order of one,

where "a" for a crack is the half-crack length. To study the influence of k1a

we conducted tests at three different frequencies, namely, 2.25, 5.0 and 7.5

MHz where k1a = 1.25, 2.7 and 4.0, respectively. In Fig. 6 we observe that

ak 2 x increases dramatically with damage, it is therefore a sensitive measure

of damage. In particular, we note -)at in going from damage state 3 to 4,

only one additional crack appears., the increase in attenuation is quite

significant and substantially greater than the error of measurement which is

17
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estimated to be about t5% (k2x is of the order of 0.2).

The damage in composite materials is not distributed uniformly; in fact,

by now it is fairly well accepted that it is a stochastic phenomenon. In view

of this we monitored damage at three different locations along the length of

the beam with the following extremely important objective in mind. Damage is

a function of the history of loading. Yet our technique should measure only

the current state of damage and should be independent of the past history.

Therefore, in Fig. 7, we have plotted attenuation versus damage at three

different locations and at three different frequencies; here damage is defined

as the cumulative crack length i.e. number of transverse cracks times the

crack length which, for the present case of 10690402)s is the thickness of the

904 group of plies i.e. 0.5 mm. Indeed, the three curves coincide within the

errors of measurement. Thus the curves in Fig. 7 may be viewed as Master

Curves for an inversion of the attenuation data to yield a measure of damage.

The corresponding data for the wavespeed at one position is included in

Fig. 8. There is virtually no change in the wavespeed with damage. (this is

consistent with a well-known fact in fracture mechanics that a crack causes a

minimal reduction in the stiffness of a structure in the direction parallel to

the crack faces). Finally, for brevity we include here only the final

conclusions of some related investigations. The details may be found in Ref.

19].

1. It has been reported at conferences that by using the Stress Wave

Factor approach one can predict the site of the final fracture.

By using the attenuation as a damage metric we found the converse

to be true i.e. one cannot predict the site of the final

fracture. We hasten to add that our observation is consistent

with the theoretical work of Riefsnider et al at VPI & SU 1101.

19
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2. There has been some debate In the literature whether or not the

process of unloading, subsequent to the formation of transverse

cracks, can cause partial (or even total) crack closure. Our

measurements show clearly that some crack closure does take place

191.

2.5 Lamb Wave Method. Theory

An extensive literature review concerning the propagation of Lamb waves

in an anisotropic plate immersed in a fluid was carried out. Only approximate

solutions were found; these have been reviewed in [111. For the case in hand

the density of water is comparable to the density of the composite material.

Therefore, the approximate theories - which are based on the assumption that

the density of the fluid is small compared to the density of the plate - yield

unacceptably erroneous results. This defined the first objective of our

work: To obtain an exact analytical solution.

Consider a symmetric composite laminate (not necessarily balanced). Let

x, and x2 lie in the plane of the plate; let x3 be perpendicular to it. The

plate occupies the space x3 = ±b. The generalized Hooke's law for such a

material is

OlC 11  C1 2  C1 3  0 0 C1 6  fl

022 C 12  C2 2  C2 3  0 0 C2 6  f221

033 C1 3  C2 3  C3 3  0 0 0 '331

023 0 0 0 2C44  C45  0 131

013 0 0 0 C54  2C 55 0 131

12 C6 1  C6 2  0 0 0 2C 6 6  12J

This relation can be written in the indicial form as

22



Oij = Cijk1kl for i,j,k,l=1,2,3

where the strain displacement relation can be written as

Cij = (U i + Uj~i)/2 for i,J=1,2,3

The equation of motion in an elastic medium is

a ij,j = u i

The boundary conditions are:

031 ' 0 and 033 = -p at the plate faces z = b.

Here p is the pressure at the plate/water interface. The wave motion in water

satisfies the equation of motion

+ 0 + k2  =

aL 3z2 L

The continuity of the normal displacements requires that the displacement in

solid (03) be equal to that in the fluid (WL):

U = WL  at z a Ub

We have solved this boundary value problem for the conlex-valued

wavenumber kx whose real part (kj) is connected to the phase velocity of the

23



Lamb wave through the relation C = w/kI and whose imaginary part (k2) is the

attenuation of the Lamb wave i.e. the wave decays at exp(-k 2x) in the x

direction. We point out that this is not attenuation in the sense of

absorption, for both media are elastic; rather, the wave attenuates because it

leaks energy into water as it propagates. It is for this reason that

frequently these waves are called "leaky Lamb waves." We now present the

final results of our calculation. As with Lamb waves for a plate in air, we

get symmetrical (longitudinal) and anti-symmetrical (flexural) waves. The

wavenumber kX is a root of the transcendental equations.

Tan(k pb) Gp*Hm iPLw2Tan(k zmb) Rp + Rm) 0

Tan(kzm b -m-Hp o(Gm/p)SQR(k2Xk2) (-p

Symmetric Mode

Tan(k zmb) Gp*Hm iLW 2Cot(k zpb) -Rp-Rm 0

Tan(k zp b)-5-Hp p(Gm/p)SQR(k 2_k2) m-

Asymmetric Mode

For details of the calculation the reader is referred to 1121. The roots

of these equations had to be searched numerically and that was found to be a

fairly involved process. Briefly, the modified Newton's (or Secant) method

was used in two steps: (1) First, assume k is real and find the best estimate

of k; (2) Second, let k be complex, k = k, + k2. Each of the above (complex)

equations yields a pair of real equations. A simultaneous numerical solution

is then found.

24



2.6 Lamb Wave Method. Experimental

A schematic of the apparatus is shown in Fig. 9. In theory we assumed

time harmonic motion; in order to simulate that in a laboratory we use a

toneburst i.e. a sinusoidal wave of about 20 cycles duration. All

measurements are made away from the two ends of the toneburst (i.e.

transients) and near the center of the toneburst. The heart of the system is

a pair of accurately matched transducers: one is energized and acts as a

transmitter, the other is passive and acts as a receiver. The wave travels as

a longitudinal or pressure wave in water. The specimen is inclined to the

incident wave at the correct angle for the Lamb wave mode of interest given by

the Snell's law:

Sin I Sin(x/2)

Cw CL

where I is the angle of incidence, CW is the speed of sound in water and CL is

the speed of the particular Lamb wave mode of interest. The leaky Lamb wave

in the specimen radiates energy into water symmetrically on both sides; this

signal is sensed by the receiving transducer. The attenuation is measured as

follows. The receiver is moved gradually in a direction perpendicular to the

"line-of-sight" of the transducers. At each step the received amplitude is

recorded. An exponential of the type exp(-k 2x) is fitted through the data to

obtain k2 . The velocity is measured as follows. The specimen is rotated

gradually and in very fine steps and the correct angle of incidence is that

which produces the maximum received amplitude. We stumbled upon an

independent (and very elegant) check on the correctness of the angle of

incidence. Through a simple calculation 1121 we have shown that if one moves

the receiver perpendicular to the "line of-sight" then, for the correct angle,

the arrival time of a point of constant phase at the receiver remains

25
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unchanged; for all other angles the arrival time changes, the magnitude of the

change being proportional to the error. Experience indicated this to be a

sensitive check on the correctness of the angle of incidence. Having found

"i" the speed is calculated from:

CL = Cw/Sin (i)

Calibration Procedures The validity of our theory was checked against some

earlier calculations as well as against our own experimental results. Our

theory was used to calculate the dispersion (wavespeed versus frequency) as

well as the attenuation curves for a steel plate in water; the motivation for

choosing steel being that Merkulov (131 had earlier reported results for this

material. First ten modes of wave propagation were calculated. The agreement

with the theory of Merkulov 1131 was found to be excellent; see 1121 for

details.

Next, dispersion and attenuation curves were calculated for an aluminum

plate In water; wavespeed and attenuation were also measured; they are

compared in Fig. 10. The solid lines are symmetrical (longitudinal) modes,

the dashed lines are the anisymmetrical (flexural) modes; the circles are the

(discrete) data points; the agreement between theory and experiment is

considered remarkably good.

Finally, the dispersion and attenuation curves for an undamaged composite

material, (0, 903) s , are shown in Fig. 11. It was found that it was easier to

collect data with the fundamental synmetric mode (SO). The comparison between

the theory and the experiment is considered quite satisfactory. In the next

section we will apply the Lamb wave method to the assessment of damage.
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2.7 Lamb Wave Method. Results

Three types of laminates were studied: 10 2,90 201s, 10 -903)s and

10,904]s - The form of damage produced was transverse cracking. As before,

the coupons were loaded in an Instron testing machine to various load

levels. At each load step the test was interrupted, an edge replication was

taken to obtain a record of the transverse cracks and the coupon was subjected

to an ultrasonic examination. The loading was then resumed. Several modes of

Lamb wave propagation were examined. Experience indicated that the most

suitable mode was the fundamental symmetric mode So (141. All data presented

in the sequal were gathered by using this mode. It also turns out that in the

long-wavelength limit the dispersion equation for this mode simplifies to

C2 = E 11/(1"12v21)

and since for the particular lay-ups under consideration

v12v21 < < J ,

approximately C2 = EI1/0

Results concerning 10 2, 9 0 2901s are reported first, see Fig. 12. Note a

rather high crack density. The crack occupies the 90°-ply group i.e. 2a =

0.25 m. Because the crack length is so small it is not surprising that the

reduction in stiffness is very small, about 5% up to failure. In Fig. 12, Eo
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is the initial stiffness and E is the "current" stiffness of the damaged

specimen. Next we report results obtained with 10 ,9031s, see Fig. 13,; the

major difference here is that the 90°-group has six plies i.e. 2a=0.75 mm. As

a result a relatively greater reduction in stiffness is observed; about 15% to

failure. The attenuation measurements are also reported; attenuation is

rather small. Next, we consider a 10,904) s laminate; see Fig. 14. Here the

edge replications are also included as is the location of the transmitting

transducer (T) and the receiving transducer (R). Note the high density of

transverse cracks at the (final) load-step 9. As expected on the basis of the

larger crack length, the reduction in stiffness is very large, about 30% to

failure.

Of course a crack may be viewed as "small" or "large" depending upon its

relation to the wavelength. To this end we have defined a dimensionless

wavenunber kla = 2wfa/CL where f is the frequency and CL is the Lamb wave

speed. The data collected with the three different laminates is "unified"

into a single plot in Fig. 15. The cumulative crack length is the number of

cracks times the crack length, 2a. It is well-known that at the very low

wavenumber of kia = 0.06, we are in the so-called Rayleigh regime of

scattering where the cracks act as weak scatters. As a result attenuation is

very low. At a slightly higher Kla = 0.28, the attenuation is still rather

low. But when k1a = 0.45, we get a substantial attenuation. It is also well-

known that at certain critical frequencies cracks begin to resonate (very much

like the vibrations of a string) This typically happens when k1a = 0(l).

Figure 15 suggests that we may be approaching resonance. This conjecture is

the subject of the current investigation.

In conclusion, we have established that both the wavespeed and the

attenuation of Lamb waves serve as measures of damage in composite material.
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